72 research outputs found

    Distribution Aligned Diffusion and Prototype-guided network for Unsupervised Domain Adaptive Segmentation

    Full text link
    The Diffusion Probabilistic Model (DPM) has emerged as a highly effective generative model in the field of computer vision. Its intermediate latent vectors offer rich semantic information, making it an attractive option for various downstream tasks such as segmentation and detection. In order to explore its potential further, we have taken a step forward and considered a more complex scenario in the medical image domain, specifically, under an unsupervised adaptation condition. To this end, we propose a Diffusion-based and Prototype-guided network (DP-Net) for unsupervised domain adaptive segmentation. Concretely, our DP-Net consists of two stages: 1) Distribution Aligned Diffusion (DADiff), which involves training a domain discriminator to minimize the difference between the intermediate features generated by the DPM, thereby aligning the inter-domain distribution; and 2) Prototype-guided Consistency Learning (PCL), which utilizes feature centroids as prototypes and applies a prototype-guided loss to ensure that the segmentor learns consistent content from both source and target domains. Our approach is evaluated on fundus datasets through a series of experiments, which demonstrate that the performance of the proposed method is reliable and outperforms state-of-the-art methods. Our work presents a promising direction for using DPM in complex medical image scenarios, opening up new possibilities for further research in medical imaging

    MEDICAL MACHINE INTELLIGENCE: DATA-EFFICIENCY AND KNOWLEDGE-AWARENESS

    Get PDF
    Traditional clinician diagnosis requires massive manual labor from experienced doctors, which is time-consuming and costly. Computer-aided systems are therefore proposed to reduce doctors’ efforts by using machines to automatically make diagnosis and treatment recommendations. The recent success in deep learning has largely advanced the field of computer-aided diagnosis by offering an avenue to deliver automated medical image analysis. Despite such progress, there remain several challenges towards medical machine intelligence, such as unsatisfactory performance regarding challenging small targets, insufficient training data, high annotation cost, the lack of domain-specific knowledge, etc. These challenges cultivate the need for developing data-efficient and knowledge-aware deep learning techniques which can generalize to different medical tasks without requiring intensive manual labeling efforts, and incorporate domain-specific knowledge in the learning process. In this thesis, we rethink the current progress of deep learning in medical image analysis, with a focus on the aforementioned challenges, and present different data-efficient and knowledge-aware deep learning approaches to address them accordingly. Firstly, we introduce coarse-to-fine mechanisms which use the prediction from the first (coarse) stage to shrink the input region for the second (fine) stage, to enhance the model performance especially for segmenting small challenging structures, such as the pancreas which occupies only a very small fraction (e.g., < 0.5%) of the entire CT volume. The method achieved the state-of-the-art result on the NIH pancreas segmentation dataset. Further extensions also demonstrated effectiveness for segmenting neoplasms such as pancreatic cysts or multiple organs. Secondly, we present a semi-supervised learning framework for medical image segmentation by leveraging both limited labeled data and abundant unlabeled data. Our learning method encourages the segmentation output to be consistent for the same input under different viewing conditions. More importantly, the outputs from different viewing directions are fused altogether to improve the quality of the target, which further enhances the overall performance. The comparison with fully-supervised methods on multi-organ segmentation confirms the effectiveness of this method. Thirdly, we discuss how to incorporate knowledge priors for multi-organ segmentation. Noticing that the abdominal organ sizes exhibit similar distributions across different cohorts, we propose to explicitly incorporate anatomical priors on abdominal organ sizes, guiding the training process with domain-specific knowledge. The approach achieves 84.97% on the MICCAI 2015 challenge “Multi-Atlas Labeling Beyond the Cranial Vault”, which significantly outperforms previous state-of-the-art even using fewer annotations. Lastly, by rethinking how radiologists interpret medical images, we identify one limitation for existing deep-learning-based works on detecting pancreatic ductal adenocarcinoma is the lack of knowledge integration from multi-phase images. Thereby, we introduce a dual-path network where different paths are connected for multi-phase information exchange, and an additional loss is added for removing view divergence. By effectively incorporating multi-phase information, the presented method shows superior performance than prior arts on this matter

    A Fixed-Point Model for Pancreas Segmentation in Abdominal CT Scans

    Full text link
    Deep neural networks have been widely adopted for automatic organ segmentation from abdominal CT scans. However, the segmentation accuracy of some small organs (e.g., the pancreas) is sometimes below satisfaction, arguably because deep networks are easily disrupted by the complex and variable background regions which occupies a large fraction of the input volume. In this paper, we formulate this problem into a fixed-point model which uses a predicted segmentation mask to shrink the input region. This is motivated by the fact that a smaller input region often leads to more accurate segmentation. In the training process, we use the ground-truth annotation to generate accurate input regions and optimize network weights. On the testing stage, we fix the network parameters and update the segmentation results in an iterative manner. We evaluate our approach on the NIH pancreas segmentation dataset, and outperform the state-of-the-art by more than 4%, measured by the average Dice-S{\o}rensen Coefficient (DSC). In addition, we report 62.43% DSC in the worst case, which guarantees the reliability of our approach in clinical applications.Comment: Accepted to MICCAI 2017 (8 pages, 3 figures

    Recurrent Saliency Transformation Network: Incorporating Multi-Stage Visual Cues for Small Organ Segmentation

    Full text link
    We aim at segmenting small organs (e.g., the pancreas) from abdominal CT scans. As the target often occupies a relatively small region in the input image, deep neural networks can be easily confused by the complex and variable background. To alleviate this, researchers proposed a coarse-to-fine approach, which used prediction from the first (coarse) stage to indicate a smaller input region for the second (fine) stage. Despite its effectiveness, this algorithm dealt with two stages individually, which lacked optimizing a global energy function, and limited its ability to incorporate multi-stage visual cues. Missing contextual information led to unsatisfying convergence in iterations, and that the fine stage sometimes produced even lower segmentation accuracy than the coarse stage. This paper presents a Recurrent Saliency Transformation Network. The key innovation is a saliency transformation module, which repeatedly converts the segmentation probability map from the previous iteration as spatial weights and applies these weights to the current iteration. This brings us two-fold benefits. In training, it allows joint optimization over the deep networks dealing with different input scales. In testing, it propagates multi-stage visual information throughout iterations to improve segmentation accuracy. Experiments in the NIH pancreas segmentation dataset demonstrate the state-of-the-art accuracy, which outperforms the previous best by an average of over 2%. Much higher accuracies are also reported on several small organs in a larger dataset collected by ourselves. In addition, our approach enjoys better convergence properties, making it more efficient and reliable in practice.Comment: Accepted to CVPR 2018 (10 pages, 6 figures
    • …
    corecore